Mihai Popean © 2018

ARRAY ANALYSIS

Case study: Milton Babbitt, Wiedersehen from the song cycle $D U$

As with every analysis, the student is invited to use the original score as the reference material and the bibliographic materials (Lake 1986, Quinn 2001, etc.). The following table summarizes the array structure underlying measures 1-10.

Lyne 1	305	124	78T	E69	250	431	79T	6E8
Lyne 2	E69	T87	124	305	6E8	79T	413	250
Lyne 3	472	0E9	356	81T	947	20E	568	1 T 3
Lyne 4	81T	356	0E9	472	1T3	568	20E	947

As far as row forms and specific ways of alteration are concerned, we observe that the first half of the table (the lynes spanning the first four columns) presents four rows.

Lyne 1 presents the basic row from, P3. The series presented in lynes 2,3 and 4 are related to this series by R, I, and RI row forms. The row forms present specific ways in which they are altered; the colorcoded trichords make it easier to discern these relationships:

	I_{3}	I_{0}	I_{5}	I_{1}	I_{2}	I_{4}	I_{7}	I_{8}	I_{10}	I_{11}	I_{6}	I_{9}	
P_{3}	3	0	5	1	2	4	7	8	A	B	6	9	R_{3}
P_{6}	6	3	8	4	5	7	A	B	1	2	9	0	R_{6}
P_{1}	1	A	3	B	0	2	5	6	8	9	4	7	R_{1}
P_{5}	5	2	7	3	4	6	9	A	0	1	8	B	R_{5}
P_{4}	4	1	6	2	3	5	8	9	B	0	7	A	R_{4}
P_{2}	2	B	4	0	1	3	6	7	9	A	5	8	R_{2}
P_{11}	B	8	1	9	A	0	3	4	6	7	2	5	R_{11}
P_{10}	A	7	0	8	9	B	2	3	5	6	1	4	R_{10}
P_{8}	8	5	A	6	7	9	0	1	3	4	B	2	R_{8}
P_{7}	7	4	9	5	6	8	B	0	2	3	A	1	R_{7}
P_{0}	0	9	2	A	B	1	4	5	7	8	3	6	R_{0}
P_{9}	9	6	B	7	8	A	1	2	4	5	0	3	R_{9}

$\begin{array}{llllllllllllll}\mathrm{RI}_{3} & \mathrm{RI}_{0} & \mathrm{RI}_{5} & \mathrm{RI}_{1} & \mathrm{RI}_{2} & \mathrm{RI}_{4} & \mathrm{RI}_{7} & \mathrm{RI}_{8} & \mathrm{RI}_{10} & \mathrm{RI}_{11} & \mathrm{RI}_{6} & \mathrm{RI}_{9}\end{array}$

As seen in the matrix, the first two rows are P_{3} and its retroversion, while the other two rows are I_{4} and its RI. There is a profound, triadic connection between the two pairs of rows, as they share the exact same number of triads and triadic content. The only difference, as it would be expected, is the placement of the triadic material, in this case organized in a very precise symmetrical displacement which allows the creation of the array:

- Lyne 1 begins with P3. After P3, the following row form in lyne 1 is I_{2}.
I2: $\quad 250 \quad 431 \quad$ A97 \quad 6B8
- Next, we will attempt to reveal if the transformation relating the two lyne 1 series may apply to the two lyne $2-4$ series and if the lynes in the second half of the table (the last four columns) are related to one another in the same way discussed above.

Relationships

Array

Serial Matrix

	I_{2}	I_{5}	I_{0}	I_{4}	I_{3}	I_{1}	I_{7}	I_{9}	I_{10}	I_{6}	I_{11}	I_{8}	
P_{2}	2	5	0	4	3	1	7	9	A	6	B	8	R_{2}
P_{11}	B	2	9	1	0	A	4	6	7	3	8	5	R_{11}
P_{4}	4	7	2	6	5	3	9	B	0	8	1	A	R_{4}
P_{0}	0	3	A	2	1	B	5	7	8	4	9	6	R_{0}
P_{1}	1	4	B	3	2	0	6	8	9	5	A	7	R_{1}
P_{3}	3	6	1	5	4	2	8	A	B	7	0	9	R_{3}
P_{9}	9	0	7	B	A	8	2	4	5	1	6	3	R_{9}
P_{7}	7	A	5	9	8	6	0	2	3	B	4	1	R_{7}
P_{6}	6	9	4	8	7	5	B	1	2	A	3	0	R_{6}
P_{10}	A	1	8	0	B	9	3	5	6	2	7	4	R_{10}
P_{5}	5	8	3	7	6	4	A	0	1	9	2	$\mathrm{~B}_{2}$	R_{5}
P_{8}	8	$\mathrm{~B}_{5}$	6	A	9	7	1	3	4	0	5	2	R_{8}
	RI_{2}	RI_{5}	RI_{0}	RI_{4}	RI_{3}	RI_{1}	RI_{7}	RI_{9}	RI_{10}	RI_{6}	RI_{11}	RI_{8}	

As it can be seen above, the lynes in the second half of the table are in the same relationship as the ones in the first half of the table, completing the super-array.

Lyne 1 renders the P_{2} of the new series, while lyne 2 contains the R_{2}.

Lyne 3 and 4 contain again I_{4} and RI_{4} but in reverse order. The whole second array looks like a half step transposition of the first series.

Lyne 1: $\mathrm{P}_{3} \rightarrow \mathrm{I}_{2}$
Lyne 2: $\mathrm{R}_{3} \rightarrow \mathrm{R}_{2}$
Lyne 3: $\mathrm{I}_{4} \rightarrow \mathrm{I}_{4}$
Lyne 4: $\mathrm{RI}_{4} \rightarrow \mathrm{RI}_{4}$

Lyne 1	305	124	78 T	E69		250	431	79 T	6 E 8
Lyne 2	E69	T87	124	305		6 E 8	79 T	413	250
Lyne 3	472	0 E 9	356	81 T		947	20 E	568	1 T 3
Lyne 4	81 T	356	0 E 9	472		1 T 3	568	20 E	947

The architecture of the super-array is as follows:

SUPER-ARRAY

Array 1 Agg. 1 Agg. 2 Agg. 3 Agg. 4
Lyne 1

305	124	78 T	E 69	
	E 69	T 87	124	305
472	0 E 9	356	81 T	

As an element of novelty perhaps, the vocal line is dropped in measure 10:

469 E53 210 T46 E82 350 T
783701 94T etc.
2TE 6T etc.
052948 2T3 58T6 etc.

It seems that Babbitt chose to keep a 4-layer structure for pitch displacement but the rendering of the series and its transpositions are no longer complete, signaling a possible "composing out" section, an interesting feature as Babbitt was always quite careful with pitch material rendering and methodological accuracy. However, there is a possibility that despite all of the mathematical planning, some
fragments are still left to be more of a musical gesture than the precise result of a combinatorial musical matrix.

The trichordal array structures identified above are elaborated on the musical surface in ways that encourage the listener to associate pitch classes in ways not captured in the array diagram.

Secondary sets continue to play a role in array compositions, just as they did in "classical" 12 -tone works. There are at least two examples of secondary sets found on the surface that can be related to the subset structure of the basic series:

305	124	78 T	E69
(025)	(013)	(013)	(025)
250	431	79 T	6 E 8
(025)	(013)	(013)	(025)

By extracting the prime forms from the two series in question, and re-ordering their elements, two triads (013) and (025) seem to be significant due to their re-occurrence, which suggests a connection at this triadic invariant level. The marginal triads are based on (025) while the internal triads are (013)-based, forming an axis of symmetry.

035	124	78 T	69 E
025	134	79 T	68 E
(025)	(013)	(013)	(025)

